Approximate inverse preconditioning in the parallel solution of sparse eigenproblems

نویسندگان

  • Luca Bergamaschi
  • Giorgio Pini
  • Flavio Sartoretto
چکیده

A preconditioned scheme for solving sparse symmetric eigenproblems is proposed. The solution strategy relies upon the DACG algorithm, which is a Preconditioned Conjugate Gradient algorithm for minimizing the Rayleigh Quotient. A comparison with the well established ARPACK code, shows that when a small number of the leftmost eigenpairs is to be computed, DACG is more efficient than ARPACK. Effective convergence acceleration of DACG is shown to be performed by a suitable approximate inverse preconditioner (AINV). The performance of such a preconditioner is shown to be safe, i.e. not highly dependent on a drop tolerance parameter. On sequential machines, AINV preconditioning proves a practicable alternative to the effective incomplete Cholesky factorization, and is more efficient than Block Jacobi. Due to its parallelizability, the AINV preconditioner is exploited for a parallel implementation of the DACG algorithm. Numerical tests account for the high degree of parallelization attainable on a Cray T3E machine and confirm the satisfactory scalability properties of the algorithm. A final comparison with PARPACK shows the (relative) higher efficiency of AINV-DACG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorized approximate inverse preconditioning of a parallel sparse eigensolver

We exploit an optimization method, called DACG, which sequentially computes the smallest eigenpairs of a symmetric, positive deenite, generalized eigenproblem, by CG minimizations of the Rayleigh quotient over subspaces of decreasing size. In this paper we analyze the eeectiveness of the approximate inverse preconditioners, AINV and FSAI as DACG preconditioners for the solution of Finite Elemen...

متن کامل

MSP: A Class of Parallel Multistep Successive Sparse Approximate Inverse Preconditioning Strategies

We develop a class of parallel multistep successive preconditioning strategies to enhance efficiency and robustness of standard sparse approximate inverse preconditioning techniques. The key idea is to compute a series of simple sparse matrices to approximate the inverse of the original matrix. Studies are conducted to show the advantages of such an approach in terms of both improving precondit...

متن کامل

Parallel Finite Element Approximate Inverse Preconditioning on Symmetric Multiprocessor Systems

Parallel normalized preconditioned conjugate gradient type methods based on normalized approximate finite element inverse matrix techniques are investigated for the efficient solution of sparse linear systems. Application of the proposed methods on a three dimensional boundary value problems is discussed and numerical results are given. The parallel implementation of the normalized precondition...

متن کامل

Parallel Approximate Inverse Preconditioners

There has been much excitement recently over the use of approximate inverses for parallel preconditioning. The preconditioning operation is simply a matrix-vector product, and in the most popular formulations, the construction of the approximate inverse seems embarassingly parallel. However, diiculties arise in practical parallel implementations. This paper will survey approximate inverse preco...

متن کامل

Approximate Inverse Preconditioning of Iterative Methods for Nonsymmetric Linear Systems

A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods. 1. Introduction. We describe a method for computing an incomplete factorization of the inverse of a general sparse matrix A 2 IR nn. The resulting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000